@hackage prob-fx0.1.0.1

A library for modular probabilistic modelling

ProbFX

Prelude

ProbFX is a library for probabilistic programming using algebraic effects that implements the paper Modular Probabilistic Models via Algebraic Effects -- this paper provides a comprehensive motivation and walkthrough of this library. To have a more interactive and visual play-around with ProbFX, please see https://github.com/min-nguyen/prob-fx: this corresponds parts of the paper to the implementation, and also provides an executable version of ProbFX as a script!

Description

ProbFx is a PPL that places emphasis on being able to define modular and reusable probabilistic models, where the decision to sample or observe against a random variable or distribution of a model is delayed until the point of execution; this allows a model to be defined just once and then reused for a variety of applications. We also implement a compositional approach towards model execution (inference) by using effect handlers.

Building and executing models

A large number of example ProbFX programs are documented here, showing how to define and then execute a probabilistic model.

In general, the process is:

  1. Define an appropriate model of type Model env es a, and (optionally) a corresponding model environment type env.

    For example, a logistic regression model that takes a list of Doubles as inputs and generates a list of Bools:

    type LogRegrEnv =
      '[  "y" ':= Bool,   -- ^ output
          "m" ':= Double, -- ^ mean
          "b" ':= Double  -- ^ intercept
      ]
    
    logRegr 
      :: (Observable env "y" Bool
       , Observables env '["m", "b"] Double)
      => [Double]           
      -> Model env rs [Bool]  
    logRegr xs = do
      -- | Specify distribution of model parameters 
      m     <- normal 0 5 #m   
      b     <- normal 0 1 #b     
      sigma <- gamma' 1 1      
      -- | Specify distribution of model output 
      let sigmoid x = 1.0 / (1.0 + exp((-1.0) * x))
      ys    <- foldM (\ys x -> do
                        p <- normal' (m * x + b) sigma
                        y <- bernoulli (sigmoid p) #y
                        return (y:ys)) [] xs
      return (reverse ys)
    

    The Observables constraint says that, for example, "m" and "b" are observable variables in the model environment env that may later be provided a trace of observed values of type Double.

    Calling a primitive distribution such as normal 0 5 #m lets us later provide observed values for "m" when executing the model.

    Calling a primed variant of primitive distribution such as gamma' 1 1 will disable observed values from being provided to that distribution.

  2. Execute a model under a model environment, using one of the Inference library functions.

    Below simulates from a logistic regression model using model parameters m = 2 and b = -0.15 but provides no values for y: this will result in m and b being observed but y being sampled.

    simulateLogRegr :: Sampler [(Double, Bool)]
    simulateLogRegr = do
      -- | Specify the model inputs
      let xs  = map (/50) [(-50) .. 50]
      -- | Specify the model environment 
          env = (#y := []) <:> (#m := [2]) <:> (#b := [-0.15]) <:> nil
      -- | Simulate from logistic regression
      (ys, envs) <- SIM.simulate logRegr env xs
      return (zip xs ys)
    

    Below performs Metropolis-Hastings inference on the same model, by providing values for the model output y and hence observing (conditioning against) them, but providing none for the model parameters m and b and hence sampling them.

    -- | Metropolis-Hastings inference 
    inferMHLogRegr :: Sampler [(Double, Double)]
    inferMHLogRegr = do
      -- | Simulate data from log regression
      (xs, ys) <- unzip <$> simulateLogRegr
      -- | Specify the model environment 
      let env = (#y := ys) <:> (#m := []) <:> (#b := []) <:> nil
      -- | Run MH inference for 20000 iterations
      mhTrace :: [Env LogRegrEnv] <- MH.mh 20000 logRegr (xs, env) ["m", "b"]
      -- | Retrieve values sampled for #m and #b during MH
      let m_samples = concatMap (get #m) mhTrace
          b_samples = concatMap (get #b) mhTrace
      return (zip m_samples b_samples)
    

    One may have noticed by now that lists of values are always provided to observable variables in a model environment; each run-time occurrence of that variable will then result in the head value being observed and consumed, and running out of values will default to sampling.

    Running the function mh returns a trace of output model environments, from which we can retrieve the trace of sampled model parameters via get #m and get #b. These represent the posterior distribution over m and b. (The argument ["m", "b"] to mh is optional for indicating interest in learning #m and #b in particular).

  3. Sampler computations can be evaluated with sampleIO :: Sampler a -> IO a to produce an IO computation.

    sampleIO simulateLogRegr :: [(Double, Bool)]