@hackage hegg0.2.0.0

Fast equality saturation in Haskell

hegg

Fast equality saturation in Haskell

Based on egg: Fast and Extensible Equality Saturation, Relational E-matching and the rust implementation.

Equality Saturation and E-graphs

Suggested material on equality saturation and e-graphs for beginners

Equality saturation in Haskell

To get a feel for how we can use hegg and do equality saturation in Haskell, we'll write a simple numeric symbolic manipulation library that can simplify expressions according to a set of rewrite rules by leveraging equality saturation.

If you've never heard of symbolic mathematics you might get some intuition from reading Let’s Program a Calculus Student first.

Syntax

We'll start by defining the abstract syntax tree for our simple symbolic expressions:

data SymExpr = Const Double
             | Symbol String
             | SymExpr :+: SymExpr
             | SymExpr :*: SymExpr
             | SymExpr :/: SymExpr
infix 6 :+:
infix 7 :*:, :/:

e1 :: SymExpr
e1 = (Symbol "x" :*: Const 2) :/: (Const 2) -- (x*2)/2

You might notice that (x*2)/2 is the same as just x. Our goal is to get equality saturation to do that for us.

Our second step is to instance Language for our SymExpr

Language

Language is the required constraint on expressions that are to be represented in e-graph and on which equality saturation can be run:

class (Analysis l, Traversable l, Ord1 l) => Language l

To declare a Language we must write the "base functor" of SymExpr (i.e. use a type parameter where the recursion points used to be in the original SymExpr), then instance Traversable, Ord1, and write an Analysis instance for it (see next section).

data SymExpr a = Const Double
               | Symbol String
               | a :+: a
               | a :*: a
               | a :/: a
               deriving (Functor, Foldable, Traversable)
infix 6 :+:
infix 7 :*:, :/:

Suggested reading on defining recursive data types in their parametrized version: Introduction To Recursion Schemes

If we now wanted to represent an expression, we'd write it in its fixed-point form

e1 :: Fix SymExpr
e1 = Fix (Fix (Fix (Symbol "x") :*: Fix (Const 2)) :/: (Fix (Const 2))) -- (x*2)/2

We've already automagically derived Functor, Foldable and Traversable instances, and can use the following template haskell functions from derive-compat to derive Ord1.

deriveEq1   ''SymExpr
deriveOrd1  ''SymExpr

Then, we define an Analysis for our SymExpr.

Analysis

E-class analysis is first described in egg: Fast and Extensible Equality Saturation as a way to make equality saturation more extensible.

With it, we can attach analysis data from a semilattice to each e-class. More can be read about e-class analysis in the Data.Equality.Analsysis module and in the paper.

We could easily define constant folding (2+2 being simplified to 4) through an Analysis instance, but for the sake of simplicity we'll simply define the analysis data as () and always ignore it.

instance Analysis SymExpr where
  type Domain SymExpr = ()
  makeA _ _ = ()
  joinA _ _ = ()

Language, again

With this setup, we can now express that SymExpr forms a Language which we can represent and manipulate in an e-graph by simply instancing it (there are no additional functions to define).

instance Language SymExpr

Equality saturation

Equality saturation is defined as the function

equalitySaturation :: forall l. Language l
                   => Fix l             -- ^ Expression to run equality saturation on
                   -> [Rewrite l]       -- ^ List of rewrite rules
                   -> CostFunction l    -- ^ Cost function to extract the best equivalent representation
                   -> (Fix l, EGraph l) -- ^ Best equivalent expression and resulting e-graph

To recap, our goal is to reach x starting from (x*2)/2 by means of equality saturation.

We already have a starting expression, so we're missing a list of rewrite rules ([Rewrite l]) and a cost function (CostFunction).

Cost function

Picking up the easy one first:

type CostFunction l cost = l cost -> cost

A cost function is used to attribute a cost to representations in the e-graph and to extract the best one. The first type parameter l is the language we're going to attribute a cost to, and the second type parameter cost is the type with which we will model cost. For the cost function to be valid, cost must instance Ord.

We'll say Consts and Symbols are the cheapest and then in increasing cost we have :+:, :*: and :/:, and model cost with the Int type.

cost :: CostFunction SymExpr Int
cost = \case
  Const  x -> 1
  Symbol x -> 1
  c1 :+: c2 -> c1 + c2 + 2
  c1 :*: c2 -> c1 + c2 + 3
  c1 :/: c2 -> c1 + c2 + 4

Rewrite rules

Rewrite rules are transformations applied to matching expressions represented in an e-graph.

We can write simple rewrite rules and conditional rewrite rules, but we'll only look at the simple ones.

A simple rewrite is formed of its left hand side and right hand side. When the left hand side is matched in the e-graph, the right hand side is added to the e-class where the left hand side was found.

data Rewrite lang = Pattern lang := Pattern lang          -- Simple rewrite rule
                  | Rewrite lang :| RewriteCondition lang -- Conditional rewrite rule

A Pattern is basically an expression that might contain variables and which can be matched against actual expressions.

data Pattern lang
    = NonVariablePattern (lang (Pattern lang))
    | VariablePattern Var

A patterns is defined by its non-variable and variable parts, and can be constructed directly or using the helper function pat and using OverloadedStrings for the variables, where pat is just a synonym for NonVariablePattern and a string literal "abc" is turned into a Pattern constructed with VariablePattern.

We can then write the following very specific set of rewrite rules to simplify our simple symbolic expressions.

rewrites :: [Rewrite SymExpr]
rewrites =
  [ pat (pat ("a" :*: "b") :/: "c") := pat ("a" :*: pat ("b" :/: "c"))
  , pat ("x" :/: "x")               := pat (Const 1)
  , pat ("x" :*: (pat (Const 1)))   := "x"
  ]

Equality saturation, again

We can now run equality saturation on our expression!

let expr = fst (equalitySaturation e1 rewrites cost)

And upon printing we'd see expr = Symbol "x"!

This was a first introduction which skipped over some details but that tried to walk through fundamental concepts for using e-graphs and equality saturation with this library.

The final code for this tutorial is available under test/SimpleSym.hs

A more complicated symbolic rewrite system which simplifies some derivatives and integrals was written for the testsuite. It can be found at test/Sym.hs.

This library could also be used not only for equality-saturation but also for the equality-graphs and other equality-things (such as e-matching) available. For example, using just the e-graphs from Data.Equality.Graph to improve GHC's pattern match checker (https://gitlab.haskell.org/ghc/ghc/-/issues/19272).

Profiling

Notes on profiling for development.

For producing the info table, ghc-options must include -finfo-table-map -fdistinct-constructor-tables

cabal run --enable-profiling hegg-test -- +RTS -p -s -hi -l-agu
ghc-prof-flamegraph hegg-test.prof
eventlog2html hegg-test.eventlog
open hegg-test.svg
open hegg-test.eventlog.html