@hackage grids0.3.0.0

Grids

HACKAGE

Grids can have an arbitrary amount of dimensions, specified by a type-level list of Nats.

Each grid has Functor, Applicative, and Representable instances making it easy to do Matlab-style matrix programming. liftA2 (+) does piecewise addition, etc.

By combining with Control.Comonad.Representable.Store you can do context-wise linear transformations for things like Image Processing or Cellular Automata.

All in a typesafe package!

Still working out the best interface for this stuff, feedback is appreciated!

Grids backed by a single contiguous Vector and gain the associated performance benefits. Currently only boxed immutable vectors are supported, but let me know if you need other variants.

Here's how we might represent a Tic-Tac-Toe board which we'll fill with alternating X's and O's:

data Piece = X | O deriving Show
toPiece :: Int -> Piece
toPiece n = if even n then X
                      else O

ticTacToe :: Grid [3, 3] Piece
ticTacToe = generate toPiece

You can collapse the grid down to nested lists! The output type of toNestedLists depends on your dimensions, e.g.:

  • Grid [3, 3] Piece will generate: [[Piece]]
  • Grid [2, 2, 2] Char will generate: [[[Char]]]
  • ...etc
λ> toNestedLists ticTacToe
[ [X,O,X]
, [O,X,O]
, [X,O,X]]

You can even create a grid from nested lists! fromNestedLists returns a grid if possible, or Nothing if the provided lists don't match the structure of the grid you specify:

λ> fromNestedLists [[1, 2], [3, 4]] :: Maybe (Grid '[2, 2] Int)
Just (Grid [[1,2]
           ,[3,4]])
λ> fromNestedLists [[1], [2]] :: Maybe (Grid '[2, 2] Int)
Nothing

Grids are Representable Functors, Applicatives, Foldable, and are Traversable!

You can do things like piecewise addition using their applicative instance:

λ> let g = generate id :: Grid '[2, 3] Int
λ> g
(Grid [[0,1,2]
      ,[3,4,5]])
λ> liftA2 (+) g g
(Grid [[0,2,4]
      ,[6,8,10]])
λ> liftA2 (*) g g
(Grid [[0,1,4]
      ,[9,16,25]])

Indexing

You can index into a grid using the Coord type family. The number of coordinates you need depends on the shape of the grid. The Coord is stitched together using the :# constructor from 1 or more Finite values. Each Finite value is scoped to the size of its dimension, so you'll need to prove that each index is within range (or just use finite to wrap an Integer and the compiler will trust you). Here's the type of Coord for a few different Grids:

Coord '[1] == Finite 1
Coord '[1, 2] == Finite 1 :# Finite 2
Coord '[1, 2, 3] == Finite 1 :# Finite 2 :# Finite 3

You can get a value at an index out using index from Data.Functor.Rep:

λ> let g = generate id :: Grid '[2, 3] Int
λ> g
(Grid [[0,1,2]
      ,[3,4,5]])
λ> g `index` (1 :# 1)
4
λ> g `index` (1 :# 0)
3
λ> g `index` (0 :# 2)
2

You can also use the cell Lens from Data.Grid.Lens to access and mutate indices:

λ> g ^. cell (0 :# 1)
1
λ> g & cell (0 :# 1) *~ 1000
(Grid [[0,1000,2],[3,4,5]])

Creation

You can generate a grid by providing a function over the integer position in the grid (generate) or by providing a function over the coordinate position of the cell (tabulate).

You can also use the fromList and fromNestedLists functions which return a Maybe (Grid dims a) depending on whether the input list is well formed.

  • fromList :: [a] -> Maybe (Grid dims a)
  • fromNestedLists :: NestedLists dims a -> Maybe (Grid dims a)
  • generate :: (Int -> a) -> Grid dims a
  • tabulate :: (Coord dims -> a) -> Grid dims a
  • pure :: a -> Grid dims a

Updating

Use either the cell lens, or fmap, applicative, traversable. For batch updates using the underlying Vector implementation use (//)

  • (//) :: Grid dims a -> [(Coord dims, a)] -> Grid dims a