@hackage delta-h0.0.2

Online entropy-based model of lexical category acquisition.

= DELTA-H

Online entropy-based model of lexical category acquisition. Grzegorz Chrupala and Afra Alishahi

= INSTALL

Install the Haskell Platform: http://hackage.haskell.org/platform/

On linux, the following command will install the delta-h executable in the bin directory:

cabal install --prefix=pwd

= USAGE

The data directory has an example input file data/goat.txt The other files are CHILDES.

To induce a model (i.e. a set of clusters), execute the following:

./bin/delta-h learn '[-12,0,12]' data/goat.txt

The argument '[-12,0,12]' specifies the features to be used (in this case preceding bigram, focus word, and following bigram. Feature ids can be inspected in the source file src/Entropy/Features.hs

The model will be stored in data/goat.txt.[-12,0,12].learn.model

You can display the model in a human-readable format with:

./bin/delta-h display data/goat.txt.[-12,0,12].learn.model

The learned model can also be used to label input data, without further learning:

./bin/delta-h label True True data/goat.txt.[-12,0,12].learn.model <
data/goat.txt

The first argument specifies whether to use focus word for labeling, the second argument whether to avoid outputting new cluster ids (not in the model).

There is also a command which test the learned model on the word prediction task:

./bin/delta-h eval-mrr True True data/goat.txt.[-12,0,12].learn.model <
data/goat.txt

The first argument specifies whether to marginalize over all cluster assignments, the second whether to output detailed information.

= SOURCES

There are some other (currently undocumented) commands: inspect src/Main.hs

The main part of the model is implemented in src/Entropy/Algorithm.hs.