@hackage streaming0.1.0.14

a free monad transformer optimized for streaming applications

Stream can be used wherever FreeT is used. The compiler's standard range of optimizations work better for operations written in terms of Stream. FreeT f m r / Stream f m r is of course extremely general, and many functor-general combinators are exported by the general module Streaming.

See the examples in Streaming.Prelude for a sense of how simple the library is to use and think about. That module is focused on employment with such base functors (readings of the f in Stream f m r) that express different forms of effectful sequences. Some of these appear elsewhere under titles like

pipes:      Producer a m r, Producer a m (Producer a m r), FreeT (Producer a m) m r
io-streams: InputStream a, Generator a r
conduit:    Source m a, ConduitM () o m r

and the like. Streaming.Prelude closely follows Pipes.Prelude, but cleverly omits the pipes:

>>>

And here we do a little connect and resume, as the streaming-io experts call it:

>>>>>>

Somehow, we didn't even need a four-character operator for that, nor advice about best practices; just ordinary Haskell common sense.

The simplest form of interoperation with pipes is accomplished with this isomorphism:

Pipes.unfoldr Streaming.next        :: Stream (Of a) m r   -> Producer a m r
Streaming.unfoldr Pipes.next        :: Producer a m r      -> Stream (Of a) m r

Interoperation with io-streams is thus:

Streaming.reread IOStreams.read     :: InputStream a       -> Stream (Of a) IO ()
IOStreams.unfoldM Streaming.uncons  :: Stream (Of a) IO () -> IO (InputStream a)

A simple exit to conduit would be, e.g.:

Conduit.unfoldM Streaming.uncons    :: Stream (Of a) m ()  -> Source m a

These conversions should never be more expensive than a single >-> or =$=.

At a much more general level, we also of course have interoperation with free:

Free.iterTM  Stream.wrap              :: FreeT f m a -> Stream f m a
Stream.iterTM Free.wrap               :: Stream f m a -> FreeT f m a

For some simple ghci examples, see the commentary throughout the Prelude module. For slightly more advanced usage see the commentary in the haddocks of streaming-bytestring and e.g. these replicas of shell-like programs from the io-streams tutorial. Here's a simple streaming GET request with intrinsically streaming byte streams.