@hackage mwc-probability2.3.1
Sampling function-based probability distributions.
Categories
License
MIT
Maintainer
jared@jtobin.ca, zocca.marco gmail
Links
Versions
Installation
Tested Compilers
Dependencies (5)
- base >=4.8 && <6
- containers >=0.6
- primitive >=0.6 && <1.0
- transformers >=0.5 && <1.0
- mwc-random >0.13 && <0.16 Show all…
Dependents (17)
@hackage/online, @hackage/mealy, @hackage/mcmc-types, @hackage/ephemeral, @hackage/vp-tree, @hackage/declarative, Show all…
mwc-probability
Sampling function-based probability distributions.
A simple probability distribution type, where distributions are characterized by sampling functions.
This implementation is a thin layer over mwc-random
, which handles RNG
state-passing automatically by using a PrimMonad
like IO
or ST s
under
the hood.
Examples
-
Transform a distribution's support while leaving its density structure invariant:
-- uniform over [0, 1] transformed to uniform over [1, 2] succ <$> uniform
-
Sequence distributions together using bind:
-- a beta-binomial composite distribution beta 1 10 >>= binomial 10
-
Use do-notation to build complex joint distributions from composable, local conditionals:
hierarchicalModel = do [c, d, e, f] <- replicateM 4 (uniformR (1, 10)) a <- gamma c d b <- gamma e f p <- beta a b n <- uniformR (5, 10) binomial n p
Check out the haddock-generated docs on Hackage for other examples.
Etc.
PRs and issues welcome.