@hackage extensible-effects2.6.1.1

An Alternative to Monad Transformers

Extensible effects

Build Status [![Join the chat at https://gitter.im/suhailshergill/extensible-effects](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/suhailshergill/extensible-effects?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) Stories in Ready Stories in progress

Implement effectful computations in a modular way!

The main and only monad is built upon Eff from Control.Eff. Eff r a is parameterized by the effect-list r and the monadic-result type a similar to other monads. It is the intention that all other monadic computations can be replaced by the use of Eff.

In case you know monad transformers or mtl: This library provides only one monad that includes all your effects instead of layering different transformers. It is not necessary to lift the computations through a monad stack. Also, it is not required to lift every Monad* typeclass (like MonadError) though all transformers.

Quickstart

To experiment with this library, it is suggested to write some lines within ghci. This section will include some code-examples, which you should try on your own!

Recommended Procedure:

  1. add extensible-effects as a dependency to a existing cabal or stack project or git clone https://github.com/suhailshergill/extensible-effects.git
  2. start stack ghci or cabal repl
  3. import some library modules as described in this section

examples are a work in progress and there will be some Quickstart module to go along the guide here

examples...

Tour through Extensible Effects

This section explains the basic concepts of this library.

The Effect List

import Control.Eff

The effect list r in the type Eff r a is a central concept in this library. It is a type-level list containing effect types.

If r is the empty list, then the computation Eff r (or Eff '[]) does not contain any effects to be handled and therefore is a pure computation. In this case, the result value can be retrieved by run :: Eff '[] a -> a

For programming within the Eff r monad, it is almost never necessary to list all effects that can appear. It suffices to state what types of effects are at least required. This is done via the Member t r typeclass. It describes that the type t occurs inside the list r. If you really want, you can still list all Effects and their order in which they are used (e.g. Eff '[Reader r, State s] a).

Handling Effects

Functions containing something like Eff (x ': r) a -> Eff r a handle effects.

The transition from the longer list of effects (x ': r) to just r is a type-level indicator that the effect x has been handled. Depending on the effect, some additional input might be required or some different output than just a is produced.

The handler functions typically are called run*, eval* or exec*.

Most common Effects

The most common effects used are Writer, Reader, Exception and State.

For the Writer, Reader and State, there are lazy and a strict variants. Each has its own module that provide the same interface. By importing one or the other, it can be controlled if the effect is strict or lazy in its inputs and outputs. Note that this changes the strictness of that effect only.

In this section, only the core functions associated with an effect are presented. Have a look at the modules for additional details.

The Exception Effect

import Control.Eff.Exception

The exception effect adds the possibility to exit a computation preemptively with an exception. Note that the exceptions from this library are handled by the programmer and have nothing to do with exceptions thrown inside the Haskell run-time.

throwError :: Member (Exc e) r => e -> Eff r a
runError :: Eff (Exc e ': r) a -> Eff r (Either e a)

An exception can be thrown using the throwError function. Its return type is Eff r a with an arbitrary type a. When handling the effect, the result-type changes to Either e a instead of just a. This indicates how the effect is handled: The returned value is either the thrown exception or the value returned from a successful computation.

The State Effect

import Control.Eff.State.{Lazy | Strict}

The state effect provides readable and writable state during a computation.

get :: Member (State s) r => Eff r s
put :: Member (State s) r => s -> Eff r ()
modify :: Member (State s) r => (s -> s) -> Eff r ()
runState :: s -> Eff (State s ': r) a -> Eff r (a, s)

The get functions accesses the current state and makes it usable within the further computation. The put function sets the state to the given value. modify updates the state using a mapping function by combining get and put.

The state-effect is handled using the runState function. It takes the initial state as an argument and returns the final state and effect-result.

The Reader Effect

import Control.Eff.Reader.{Strict | Lazy}

The reader effect provides an environment that can be read. Sometimes it is considered as read-only state.

ask :: Member (Reader e) r => e -> Eff r e
runReader :: e -> Eff (Reader e ': r) a -> Eff r a

The environment given to the handle the reader effect is the one given during the computation if asked for.

The Writer Effect

import Control.Eff.Writer.{Strict | Lazy}

The writer effect allows to output messages during a computation. It is sometimes referred to as write-only state, which gets retrieved at the end of the computation.

tell :: Member (Writer w) r => w -> Eff r ()
runWriter :: (w -> b -> b) -> b -> Eff (Writer w ': r) a -> Eff r (a, b)
runListWriter :: Eff (Writer w ': r) a -> Eff r (a, [w])

Running a writer can be done in several ways. The most general function is runWriter that folds over all written values. However, if you only want to collect the the values written, the runListWriter function does that.

Note that compared to mtl, the value written has no Monoid constraint on it and can be collected in any way.

Using multiple Effects

The main benefit of this library is that multiple effects can be included with ease.

If you need state and want to be able exit the computation with an exception, the type of your effectful computation would be the one of myComp below. Then, both the state and exception effect-functions can be used. To handle the effects, both the runState and runError functions have to be provided.

myComp :: (Member (Exc e) r, Member (State s) r) => Eff r a

run1 :: (Either e a, s)
run1 = run . runState initalState . runError $ myComp

run2 :: Either e (a, s)
runs = run . runError . runState initalState $ myComp

However, the order of the handlers does matter for the final result. run1 and run2 show different executions of the same effectful computation. In run1, the returned state s is the last state seen before an eventual exception gets thrown (similar to the semantics in typical imperative languages), while in run2 the final state is returned only if the whole computation succeeded - transaction style.

Tips and tricks

There are several constructs that make it easier to work with the effects.

If only a part of the result is necessary for the further computation, have a look at the eval* and exec* functions, which exist for some effects. The exec* functions discard the result of the computation (the a type). The eval* functions discard the final result of the effect.

Instead of writing (Member (Exc e) r, Member (State s) r) => ... it is possible to use the type operator <:: and write [ Exc e, State s ] <:: r => ..., which has the same meaning.

Other Effects

work in progress

Integration with IO

work in progress

Integration with Monad Transformers

work in progress

Writing your own Effects and Handlers

work in progress

Background

extensible-effects is based on the work Extensible Effects: An Alternative to Monad Transformers. The paper and the followup freer paper contain details. Additional explanation behind the approach can be found on Oleg's website.

Limitations

Ambiguity-Flexibility tradeoff

The extensibility of Eff comes at the cost of some ambiguity. A useful pattern to mitigate the ambiguity is to specialize the call to the handler of effects using type application or type annotation. Examples of this pattern can be seen in Example/Test.hs.

Note, however, that the extensibility can also be traded back, but that detracts from some of the advantages. For details see section 4.1 in the paper.

Some examples where the cost of extensibility is apparent:

  • Common functions can't be grouped using typeclasses, e.g. the ask and getState functions can't be grouped with some

    class Get t a where
      ask :: Member (t a) r => Eff r a
    

    ask is inherently ambiguous, since the type signature only provides a constraint on t, and nothing more. To specify fully, a parameter involving the type t would need to be added, which would defeat the point of having the grouping in the first place.

  • Code requires greater number of type annotations. For details see #31.

Current implementation only supports GHC version 7.8 and above

This is not a fundamental limitation of the design or the approach, but there is an overhead with making the code compatible across a large number of GHC versions. If this is needed, patches are welcome :)